If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-20t-40=0
a = 5; b = -20; c = -40;
Δ = b2-4ac
Δ = -202-4·5·(-40)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{3}}{2*5}=\frac{20-20\sqrt{3}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{3}}{2*5}=\frac{20+20\sqrt{3}}{10} $
| R=6t | | 3x²-23=x² | | 2x²+4=1 | | (2x-3)³+1=19 | | 2x-13+3x-12=180 | | p=2.320(1.2)9 | | 200,000=2x+x | | 8x+-3=4(2x+-3) | | 1÷4x-5÷8=3÷8 | | p=2320(1.2^9) | | 0=90w-(57w+5,000) | | 6a+7/3a+2=5/3 | | 25x-3=3+25x | | 3x+4×-1=34 | | 5(k+1)=25 | | (4x+15)=90 | | (4x+15)=20 | | (3y+4)(y-2)=0 | | 8x÷3=x-5 | | 0.5(4t+10)=13 | | (x-)(x+9)=11 | | x^2-7x-690=0 | | 9=2,320(1.2)x | | 15x=12x-15 | | 1/2(4t+10)=13 | | (4t+10)=13 | | 0.5×(4t+10)=13 | | .89=13/x | | p=2320(1.2)^9 | | 49-y*8=96 | | 11+6x=5-2x | | y-49*8=96 |